United States Patent

US009325695B2

(12) 10) Patent No.: US 9,325,695 B2
Bachmann et al. 45) Date of Patent: Apr. 26, 2016
(54) TOKEN CACHING IN TRUST CHAIN %8843‘; 8(1)23332 i} égggi Eisher et ?il
T0ss et al.
PROCESSING 2005/0154887 Al 7/2005 Birk et al.
2006/0015932 Al 1/2006 Balli t al.
(75) Inventors: David Werner Bachmann, [.eander, TX 2006/0020813 Al 1/2006 B?rkl ggzlr,e :
(US); Nicholas George Harlow, Santa 2007/0169175 Al* 7/2007 Hall etal. ..ccoocovrovvinenrnce 726/3
Cruz, CA (US); Heather Maria Hinton,
Austin, TX (US); Patrick Ryan OTHER PUBLICATIONS
Wardrop, Austin, TX (US) Knauth et al; “UPnP Compression for IP based Field Devices in
. Building Automation,” Knauth, S.; Kaslin, D.: Kistler, R.; Klapproth,
(73) Assignee: INTERNATIONAL BUSINESS A., 2006 IEEE Conference on Emerging Technologies and Factory
fACg(IBIT\F; (%(S))RPORATIONs Automation, Sep. 2006, pp. 445-448.
rmonk,
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this v
patent is extended or adjusted under 35 Primary Examiner — Jeffrey D Popham
U.S.C. 154(b) by 1880 days. (74) Attorney, Agent, or Firm — Garg Law Firm, PLLC;
21) Appl. No.: 12/327,899 Rakesh Garg; William J. Stock
ppl. No.: R
57 ABSTRACT
(22) Filed: Dec. 4,2008 7)
A method, system, and computer usable program product for
(65) Prior Publication Data token caching in a trust chain processing are provided in the
illustrative embodiments. An information in a token associ-
US 2010/0146290 Al Jun. 10, 2010 ated with a first request is mapped. A determination is made
(51) Int.Cl whether a requester of the first request has provided a con-
i straint in the first request, the constraint concerning the token,
HO4L 29/06 (2006.01)
52) US.Cl the constraint forrmpg a che.:nt constraint. The.chent con-
(CPC : FI04L 630815 (2013.01): HO4L 630823 straint is stored. The information and the mapped information
"""" (01); 2013.01 is stored, forming stored information. The token is received in
. . . (01) asecond request. The stored information is reused if the client
(58) Field of Classification Search constraint allows reusing the stored information. A further
None) determination may be made whether a target system receiving
See application file for complete search history. the mapped information has provided a server constraint, the
(56) Ref Cited second constraint concerning the mapped information, the
eferences Cite

U.S. PATENT DOCUMENTS

6,898,711 Bl 5/2005 Bauman et al.
7,225,464 B2* 5/2007 Satyavoluetal. ... 726/10

second constraint forming a server constraint. The stored
information may be reused if the server constraint allows
reusing the stored information.

19 Claims, 7 Drawing Sheets

FROMFIG.10

o

\UTHENTICATION
IFORMATION

N A
N 101
08
° FROMFG.10
MAPREMAR
AUTHENTICATION
INFORMATION 908

DETERMINE SERVER
IMPOSED CONSTRAINTS
AUTHENTICATION
INFORMATION

‘SAVE RECEIVED

CONSTRAINTS, AND
SERVER CONSTRANTS
912

USE THE MAPPED/
REMAPPED
AUTHENTICATION
INFORMATION 914

U.S. Patent Apr. 26,2016 Sheet 1 of 7 US 9,325,695 B2

FIG. 1
100
L a6 TRUST SERVER
— 105
]
m =
=] CLIENT 11
= -
SERVER 104
NETWORK
102
STORAGE
108 — APPLICATION
— EH 113
-
-
m CLIENT 112
b
= APPLICATION
= = 107
SERVER 106
PROCESSING
FIG. 2 UNIT 200
206 ‘
GRAPHICS MAIN
PROCESSOR <_"> NBZ"S"ZCH N vEmory
210 202 N 208 AUDIO sio

U T 1Y

SBICH
BUS 240 204 BUS 238
DISK o USB AND PCI/PCle K%Yfrgg R
226 ROM OTHER MODEM ROM
226 230 o DEVICES MOUSE
230 ORTS) o 222 224
NETWORK 232 234 ADAPTER
ADAPTER 220

212

U.S. Patent Apr. 26,2016 Sheet 2 of 7

US 9,325,695 B2
FIG. 3
300
OUTGOING
REQUEST (e.g.
INCOMING WEB SERVICE
REQUEST REQUEST
INCLUDING A WEB SERVICE WITH JAAS
TOKEN SEGURITY SUBJECT)
302 HANDLER 304
> 306 SUBJECT SETTING > >
COMPONENT
> 318
A 4
TRUST CLIENT 'y
308 E
INCOMING TOKEN OUTGOING TOKEN
(.g. SAML TOKEN (e.g. USERNAME
OR USERNAME/ OR USERNAME v
PASSWORD) AND SAML TOKEN) TAAS
FRAMEWORK
TRUST SERVER PROVIDING JAAS
310 SUBJECT
320

AUDIT LOG 322

U.S. Patent

Apr.26,2016 Sheet 3 of 7 US 9,325,695 B2
FIG4 40
OUTCOMING
INCOMING REQUEST
REQUEST (e.g., TO CICS)
li@ T 404
JAAS LOGIN
406

TRUST CLIENT
408

- ™\

INCOMING TOKEN OUTGOING TOKEN
(e.g. USERNAME (e.g. USERNAME
WITH JAAS WITH RACF ID/
SUBJECT) PASS TICKET)
\\> TRUST SERVER

410

_/
(a0

AUDIT LOG 422

U.S. Patent Apr. 26,2016 Sheet 4 of 7 US 9,325,695 B2

OUTGOING 2
INCOMING
REQUEST (e.g. ‘(

REQUEST

TO CICS WITH
WITH JAAS

SUBJECT RACF ID AND

502 PASS TICKET)

FIG. 5 T l 504

JAAS LOGIN 506
CACHE

JAAS SUBJECT;

CREATED; EXPIRES;
REUSE_TIMES
ID/PAASTICKET

TRUST CLIENT

508
INCOMING TOKEN oUTG(:brOKEN
(e.g. USERNAME (e.g. USERNAME
WITH JAAS WITH RACF ID/
SUBJECT) PASS TICKET)

\ TRUST SERVER
510

/
@&QC.@

U.S. Patent Apr. 26,2016 Sheet 5 of 7 US 9,325,695 B2

FIG. 6 Af N -

JAAS LOGIN 606 SAML CACHE OUTCOMING
NCOMING JAAS SUBJECT; REQUEST
RESUEST CREATED: EXPIRES; {e.g., TO CICS)

a0 REUSE_TIMES 604
) SAML ASSE e

RACFID CACHE
JAAS SUBJECT;
CREATED;

ID/PASS TICKET

TRUST CLIENT
608

INCOMING TOKEN (\

OUTGOING TOKEN

(e.g. USERNAME (e.g. USERNAME
WITH JAAS WITH RACF ID/
SUBJECT) PASS TICKET)

\) TRUST SERVER

610

AUDIT LOG 622

U.S. Patent Apr. 26,2016 Sheet 6 of 7 US 9,325,695 B2
FIG. 7 y 100 FIG. 8 o 800
(START) (sTarT ’
— : ’ FROM FIG.8
Y v
RECEIVE AUTHENTICATION
INFORMATION RECEIVE
702 AUTHENTICATION
—_ INFORMATION
L 802
VALIDATE
AUTHENTICATION
INFORMATION
704
v CACHED? NO@ TOFIG.7
DETERMINE CLIENT
IMPOSED CONSTRAINTS
ON AUTHENTICATION
INFORMATION
706 YES
L
MAP AUTHENTICATION
CLIENT
INFOR;I\(;I?TION CONSTRAINTS NG _>® TOFIG7
— SATISFIED? :
806
\4
SAVE RECEIVED
AUTHENTICATION
INFORMATION, MAPPED YES
AUTHENTICATION *
INFORMATION, AND CLIENT
CONSTRAINTS REUSE THE SAVED
710 MAPPED
— AUTHENTICATION
v INFORMATION
808
USE THE MAPPED
AUTHENTICATION v
INFORMATION
12 END

END

US 9,325,695 B2

U.S. Patent Apr. 26,2016 Sheet 7 of 7
900
FIG. 9 =
P FIG. 10 1000
(smarT }
FROM FIG.10 START
A 4
RECEIVE AUTHENTICATION
INFORMATION
202 RECEIVE
AUTHENTICATION
v INFORMATION
VALIDATE 1002
AUTHENTICATION
INFORMATION
9804
Y CACHED? NO TO FIG.9
DETERMINE CLIENT 1004 :
IMPOSED CONSTRAINTS
ON AUTHENTICATION
INFORMATION
906
FROM FIG.10 YES
v
MAP/REMAP
AUTHENTICATION
CLIENT
INFORMATION 908 CONSTRAINTS o omee
SATISFIED? '

Y
DETERMINE SERVER
IMPOSED CONSTRAINTS
AUTHENTICATION
INFORMATION
810

Y
SAVE RECEIVED
AUTHENTICATION
INFORMATION, MAPPED
AUTHENTICATION
INFORMATION, REMAPPED
AUTHENTICATION
INFORMATION, CLIENT
CONSTRAINTS, AND
SERVER CONSTRAINTS
912

v

USE THE MAPPED/

REMAPPED
AUTHENTICATION
INFORMATION 914

1006

YES

SERVER
CONSTRAINTS
SATISFIED?

1008

NO@ TOFIG.8

REUSE THE SAVED
MAPPED
AUTHENTICATION
INFORMATION

1010

END

US 9,325,695 B2

1

TOKEN CACHING IN TRUST CHAIN
PROCESSING

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to an improved data
processing system, and in particular, to a computer imple-
mented method for performing access control in a data pro-
cessing system. Still more particularly, the present invention
relates to a computer implemented method, system, and com-
puter usable program code for token caching in trust chain
processing.

2. Description of the Related Art

Data processing systems and applications executing
thereon interact with each other in a data processing environ-
ment. Often, such interactions have to pass some type of
security system so that only authorized data processing sys-
tems and applications are permitted to interact with each
other in the data processing environment.

A variety of security systems is available for use in data
processing environments. Some security systems verify the
identity of a data processing system, an application, or a user,
such as by using digital signatures. Other security systems
verify the identity as well as authorization of a data process-
ing system, an application, or a user to engage in the interac-
tion in question. For example, a security system may use a
combination of digital signature, encryption keys, and access
control parameters to perform this level of security enforce-
ment.

Still other security systems employ a structured method of
presenting and processing security related information. The
structured presentation of security related information is
called a security token. This information may be contained
within a message. The message may be consistent with stan-
dard-based descriptions, such as those provided by web ser-
vices specifications, for example, WS-Security and WS-Trust
specifications. For example, WS-Security specification
describes how to include a pre-defined part of a message, such
as a security header dedicated to carrying security informa-
tion, into the message. As another example, WS-Trust speci-
fication defines how to structure information within the secu-
rity header defined by the WS-Security specification.

Processing of security information included within a mes-
sage according to these standards based definitions requires
several steps and may be completed through functionality
provided by atrust server. A Trust Server is an application that
processes this security information through a process known
as trust chain processing.

One such structured method of presenting this security
information is a security token format defined by the Security
Assertion Markup Language (SAML). SAML is an exten-
sible markup language (XML) based organization of authen-
tication and authorization information exchanged between,
and within, security domains.

A security token in an organization of security information
in a predefined format. The security information presented in
a SAML-defined security token is called a SAML token. A
SAML token is also known as a SAML assertion. The pro-
cessing of the security information presented in this manneris
called SAML token processing. Processing of security infor-
mation represented by a SAML token often requires more
than one step and may be completed by a trust server.

A security domain is a data processing environment, bound
by a trust relationship, within which a given security token
may be used. Information passed across security domains
requires additional trust relationships to ensure that informa-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion valid in one domain can be trusted in another domain. A
security domain may pass security tokens, such as SAML
token, within a security domain or to another security domain
when a data processing system, an application, or a user in the
first security domain requests to access data, functionality, or
services provided by the other security domain. Security
domains include the security infrastructure capable of per-
forming security token processing and assessing the authen-
tication and authorization parameters of the requesting data
processing system, application, or user.

SUMMARY OF THE INVENTION

The illustrative embodiments provide a method, system,
and computer usable program product for token caching in a
trust chain processing. An information in a token associated
with a first request is mapped, forming mapped information.
A determination is made whether a requester of the first
request has provided a constraint in the first request, the
constraint concerning the token, the constraint forming a
client constraint. The client constraint is stored. The informa-
tion and the mapped information is stored, forming stored
information. The token is received in a second request. The
stored information is reused if the client constraint allows
reusing the stored information.

The client constraint may include a time of expiry of the
token, a duration of validity of the token, a number of reuse
permitted of the token, an indication whether a target system
can receive the client constraint, or a combination thereof. A
further determination may be made whether a target system
receiving the mapped information has provided a second
constraint, the second constraint concerning the mapped
information, the second constraint forming a server con-
straint. The stored information may be reused if the server
constraint allows reusing the stored information. The server
constraint may include a time of expiry of the mapped infor-
mation, a duration of validity of the mapped information, a
number of reuse permitted of the mapped information, or a
combination thereof. A conflict between the client constraint
and the server constraint may be resolved with respect to the
token and the mapped information resulting from the token.

The requester may control the reuse of the information in
the token by a trust service. The token may be an incoming
SAML token, the information may be authentication infor-
mation, the mapping may be a part of a trust chain processing,
and the mapped information may be an issued outgoing
token.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself;
however, as well as a preferred mode of use, further objectives
and advantages thereof, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read in conjunction with the accompany-
ing drawings, wherein:

FIG. 1 depicts a pictorial representation of a network of
data processing systems in which illustrative embodiments
may be implemented;

FIG. 2 depicts a block diagram of a data processing system
in which illustrative embodiments may be implemented;

FIG. 3 depicts a block diagram of a trust chain processing
system in which the illustrative embodiments may be imple-
mented;

US 9,325,695 B2

3

FIG. 4 depicts a block diagram of a trust chain processing
system associated with a target application within which the
illustrative embodiments may be implemented;

FIG. 5 depicts a block diagram of a token caching trust
chain processing system associated with a target application
in accordance with an illustrative embodiment;

FIG. 6 depicts a block diagram of a token caching trust
chain processing system in accordance with an illustrative
embodiment;

FIG. 7 depicts a flowchart of a process for token caching in
trust chain processing in accordance with an illustrative
embodiment;

FIG. 8 depicts a flowchart of a process of using cached
token information in accordance with an illustrative embodi-
ment;

FIG. 9 depicts a flowchart of a process for token caching in
trust chain processing in accordance with an illustrative
embodiment; and

FIG. 10 depicts a flowchart of a process of using cached
token information in accordance with an illustrative embodi-
ment.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The illustrative embodiments are described using SAML
token processing only as an example for the clarity of the
description. The illustrative embodiments may be similarly
implemented where the security information may be in the
form of a username and password pair, a system specific data
construct, or a proprietary organization of data.

In many data processing environments, an application may
repeatedly present tokens to another application. For
example, a client application may presenta SAML token with
each request to an application. Furthermore, the client appli-
cation may present the same SAML token with each request
to the application.

Many applications, such as a customer information control
system (CICS) application, have to use some or all of the
security information that may be included in a SAML token
or some substitute thereof. However, these applications may
need this information to be presented in a format that differs
from the format of the SAML token. For example, a CICS
application may require a resource access control facility
identifier (RACF ID) and a corresponding passticket instead
of a SAML token.

However, illustrative embodiments recognize that few
applications have the capability of understanding security
information that may be organized in any of a number of ways
of organizing security information. Parsing a SAML token
may not be within the capabilities of many applications that
have to use the security information typically presented in
SAML Tokens.

In such environments, a trust service provides the trust
chain processing. The trust service in performing the trust
chain processing, inter alia, performs the validation of the
token, parsing of the data presented by in the token, and
issuance of the token information for use by the target appli-
cation. The trust chain processing may also include mapping
of the token information to other forms or formats according
to the target application.

Presently, a security system capable of processing the type
of organization of security information expected in a data
processing environment is included as a layer on top of many
applications. Such a security system forming such a layerin a

5

10

15

20

25

30

40

45

50

55

60

65

4

data processing environment is also known as a trust server.
Federated identity management system is an example of a
trust server.

As an example, a trust server responsible for trust chain
processing in a security domain may process a SAML token
that a different security domain may present with a request to
aparticular application within the security domain of the trust
server. The trust server then transforms the security informa-
tion from the SAML token into a form that the particular
application may know how to use, and passes the transformed
security information to that application.

However, illustrative embodiments recognize that trust
chain processing is a resource intensive process. In a data
processing environment, one way of computing the cost of
executing an application bases the cost on the amount of
resources, such as CPU cycles and memory space, the appli-
cation consumes. From this point of view, trust chain process-
ing is an expensive process. [llustrative embodiments recog-
nize that performing trust chain processing repeatedly may
further increase the cost of trust chain processing.

Furthermore, a token processing mechanism may use a
token cache, which is a data storage area, such as an area of
memory associated with a data processing system. Token
cache can grow in size as increasing number of tokens are
received, processed, or both. A growing token cache may
become a factor in degrading the performance of the overall
data processing system and the applications executing
thereon.

To address these and other problems related to processing
security information, the illustrative embodiments provide a
method, system, and computer usable program product for
token caching. The token caching techniques of the illustra-
tive embodiments may be usable in conjunction with trust
chain processing.

The token caching techniques described with respect to the
illustrative embodiments may be useful in keeping the size of
the token cache smaller as compared to the size of token cache
with presently available techniques. The illustrative embodi-
ments may also be useful in improving the efficiency of
searching a token cache by virtue of the small size of the token
cache according to the illustrative embodiments.

The illustrative embodiments may also be used in conjunc-
tion with other types of caching techniques. For example, the
illustrative embodiments may be used in conjunction with a
cache mechanism that is configured to determine some
parameters of the tokens on its own. As another example, the
illustrative embodiments may be used with an application that
may be configured to add tokens to a data storage and set
caching parameters.

The illustrative embodiments may be used in conjunction
with any application or any data processing system that may
use security information, including but not limited to pres-
ently available trust servers. The illustrative embodiments are
described using SAML token processing only as an example,
and the described SAML tokens or processing thereof is not
limiting on the illustrative embodiments. The illustrative
embodiments may be used in conjunction with any organiza-
tion of security information and in any type of trust chain
processing. In some implementations, the illustrative
embodiments may be used to process information related to a
particular sender of a request, such as a username and pass-
word, or information related to a request, transaction, or pro-
cessing in the manner described to gain access to controlled
resources.

For example, the illustrative embodiments may be imple-
mented with a digital certificate processing system. The illus-
trative embodiments may further be implemented in conjunc-

US 9,325,695 B2

5

tion with any business application, enterprise software, and
middleware applications or platforms. Additionally, the illus-
trative embodiments may be implemented in conjunction
with a hardware component, such as in a firmware, as embed-
ded software in a hardware device, or in any other suitable
hardware or software form.

The illustrative embodiments provide a method, system,
and computer usable program product for caching tokens and
token related information in a token processing system. Cach-
ing information is saving the information such that the infor-
mation may be reused without retrieving from the source of
the information or without re-computing the information.

Caching of reusable information is known for information
other than tokens and information resulting from tokens.
Caching of tokens and token related information, however, is
non-trivial extension of the caching principle, as will be
apparent from this disclosure.

A token processing system may include pluggable mod-
ules that together implement a set of token processing steps
used to complete a token processing task. Such a token pro-
cessing system may be used where the token is a security
token or any other token containing information that has to be
processed using token processing.

A trust server including a token processing system may be
used to process certain information contained in a message or
required for processing a message. This information can be a
part of the message or be a security token, such as a SAML
token, that is bound to the message. For example, the infor-
mation may be in a format of a token that the token processing
system may validate, map, or issue for use in relation with the
message.

When the information to be processed is represented as a
security token, namely a token containing security specific or
other authentication information, the trust server according to
the illustrative embodiments may take the form of a security
token service. When acting as a security token service, the
processing of an illustrative embodiment may be invoked
when a message with security information is received or
when a message containing security information is to be
generated.

When a message with security information is received, the
illustrative embodiments extract the security information
from the message, typically from a security header, and pass
the security information to the trust server of the illustrative
embodiments for processing. The trust server of the illustra-
tive embodiments receive the security as a complex security
information that may be encrypted and signed and may take
many different formats. Complex security information is
security information including multiple values.

The security information processed by the illustrative
embodiments may have to be mapped, or converted, to a
different form. In some cases, the security information may
already be in a converted form at processing, and the illustra-
tive embodiments may re-map the security information. The
mapped or to-be-mapped security information may be stored
in either a memory or a data storage associated with a data
processing system or both.

Any advantages listed herein are only exemplary and are
not intended to be limiting on the illustrative embodiments.
Additional advantages may be realized by specific illustrative
embodiments. Furthermore, a particular illustrative embodi-
ment may have some, all, or none of the advantages listed
above.

With reference to the figures and in particular with refer-
ence to FIGS. 1 and 2, these figures are exemplary diagrams
of data processing environments in which illustrative
embodiments may be implemented. FIGS. 1 and 2 are only

10

15

20

25

30

35

40

45

50

55

60

65

6

exemplary and are not intended to assert or imply any limi-
tation with regard to the environments in which different
embodiments may be implemented. A particular implemen-
tation may make many modifications to the depicted environ-
ments based on the following description.

FIG. 1 depicts a pictorial representation of a network of
data processing systems in which illustrative embodiments
may be implemented. Data processing environment 100 is a
network of computers in which the illustrative embodiments
may be implemented. Data processing environment 100
includes network 102. Network 102 is the medium used to
provide communications links between various devices and
computers connected together within data processing envi-
ronment 100. Network 102 may include connections, such as
wire, wireless communication links, or fiber optic cables.
Server 104 and server 106 couple to network 102 along with
storage unit 108.

Software applications may execute on any computer in
data processing environment 100. In the depicted example,
server 104 includes trust server 105, which may be an exem-
plary software application, in conjunction with which the
illustrative embodiments may be implemented. Server 106
may include application 107, which may be a target system.
Client 112 may be in a different security domain than the
security domain of servers 104 and 106. Client 112 may
include application 113, which may present a SAML token.

In addition, clients 110, 112, and 114 couple to network
102. Any of clients 110, 112, and 114 may have an applica-
tion, typically a client application, executing thereon. As an
example, client 112 is depicted to have application 113
executing thereon. Browser 113 may be a commonly used
web-browser.

Servers 104 and 106, storage units 108, and clients 110,
112, and 114 may couple to network 102 using wired con-
nections, wireless communication protocols, or other suitable
data connectivity. Clients 110, 112, and 114 may be, for
example, personal computers or network computers.

Inthe depicted example, server 104 may provide data, such
as boot files, operating system images, and applications to
clients 110, 112, and 114. Clients 110, 112, and 114 may be
clients to server 104 in this example. Clients 110, 112,114, or
some combination thereof, may include their own data, boot
files, operating system images, and applications. Data pro-
cessing environment 100 may include additional servers, cli-
ents, and other devices that are not shown.

In the depicted example, data processing environment 100
may be the Internet. Network 102 may represent a collection
of networks and gateways that use the Transmission Control
Protocol/Internet Protocol (TCP/IP) and other protocols to
communicate with one another. At the heart of the Internet is
a backbone of data communication links between major
nodes or host computers, including thousands of commercial,
governmental, educational, and other computer systems that
route data and messages. Of course, data processing environ-
ment 100 also may be implemented as a number of different
types of networks, such as for example, an intranet, a local
area network (LAN), or a wide area network (WAN). FIG. 1
is intended as an example, and not as an architectural limita-
tion for the different illustrative embodiments.

Among other uses, data processing environment 100 may
be used for implementing a client server environment in
which the illustrative embodiments may be implemented. A
client server environment enables software applications and
data to be distributed across a network such that an applica-
tion functions by using the interactivity between a client data
processing system and a server data processing system. Data
processing environment 100 may also employ a service ori-

US 9,325,695 B2

7

ented architecture where interoperable software components
distributed across a network may be packaged together as
coherent business applications.

With reference to FIG. 2, this figure depicts a block dia-
gram of a data processing system in which illustrative
embodiments may be implemented. Data processing system
200 is an example of a computer, such as server 104 or client
110 in FIG. 1, in which computer usable program code or
instructions implementing the processes may be located for
the illustrative embodiments.

In the depicted example, data processing system 200
employs a hub architecture including North Bridge and
memory controller hub (NB/MCH) 202 and south bridge and
input/output (1/O) controller hub (SB/ICH) 204. Processing
unit 206, main memory 208, and graphics processor 210 are
coupled to north bridge and memory controller hub (NB/
MCH) 202. Processing unit 206 may contain one or more
processors and may be implemented using one or more het-
erogeneous processor systems. Graphics processor 210 may
be coupled to the NB/MCH through an accelerated graphics
port (AGP) in certain implementations.

In the depicted example, local area network (LAN) adapter
212 is coupled to south bridge and I/O controller hub (SB/
ICH) 204. Audio adapter 216, keyboard and mouse adapter
220, modem 222, read only memory (ROM) 224, universal
serial bus (USB) and other ports 232, and PCI/PCle devices
234 are coupled to south bridge and 1/O controller hub 204
through bus 238. Hard disk drive (HDD) 226 and CD-ROM
230 are coupled to south bridge and 1/O controller hub 204
through bus 240. PCI/PCle devices may include, for example,
Ethernet adapters, add-in cards, and PC cards for notebook
computers. PCI uses a card bus controller, while PCle does
not. ROM 224 may be, for example, a flash binary input/
output system (BIOS). Hard disk drive 226 and CD-ROM 230
may use, for example, an integrated drive electronics (IDE) or
serial advanced technology attachment (SATA) interface. A
super 1/O (SIO) device 236 may be coupled to south bridge
and 1/O controller hub (SB/ICH) 204.

An operating system runs on processing unit 206. The
operating system coordinates and provides control of various
components within data processing system 200 in FIG. 2. The
operating system may be a commercially available operating
system such as Microsoft® Windows® (Microsoft and Win-
dows are trademarks of Microsoft Corporation in the United
States and other countries), or Linux® (Linux is the trade-
mark of Linus Torvalds in the United States and other coun-
tries). An object oriented programming system, such as the
Java™ programming system, may run in conjunction with the
operating system and provides calls to the operating system
from Java™ programs or applications executing on data pro-
cessing system 200 (Java is a trademark of Sun Microsys-
tems, Inc., in the United States and other countries).

Instructions for the operating system, the object-oriented
programming system, and applications or programs are
located on storage devices, such as hard disk drive 226, and
may be loaded into main memory 208 for execution by pro-
cessing unit 206. The processes of the illustrative embodi-
ments may be performed by processing unit 206 using com-
puter implemented instructions, which may be located in a
memory, such as, for example, main memory 208, read only
memory 224, or in one or more peripheral devices.

The hardware in FIGS. 1-2 may vary depending on the
implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or in place of the hardware depicted in FIGS. 1-2.

10

15

20

25

30

35

40

45

50

55

60

65

8

In addition, the processes of the illustrative embodiments
may be applied to a multiprocessor data processing system.

In some illustrative examples, data processing system 200
may be a personal digital assistant (PDA), which is generally
configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-gener-
ated data. A bus system may comprise one or more buses,
such as a system bus, an [/O bus, and a PCI bus. Of course, the
bus system may be implemented using any type of commu-
nications fabric or architecture that provides for a transfer of
data between different components or devices attached to the
fabric or architecture.

A communications unit may include one or more devices
used to transmit and receive data, such as a modem or a
network adapter. A memory may be, for example, main
memory 208 or a cache, such as the cache found in north
bridge and memory controller hub 202. A processing unit
may include one or more processors or CPUs.

The depicted examples in FIGS. 1-2 and above-described
examples are not meant to imply architectural limitations. For
example, data processing system 200 also may be a tablet
computer, laptop computer, or telephone device in addition to
taking the form of a PDA.

With reference to FIG. 3, this figure depicts a block dia-
gram of a trust chain processing system in which the illustra-
tive embodiments may be implemented. Trust chain process-
ing system 300 may include trust server 105 in FIG. 1.

As an example, incoming request 302 may be a web service
request with an incoming token, such as a SAML token or a
username and password pair. Incoming request 302 may also
be a web services security header, or any other type of request
including tokenized information. Trust chain processing sys-
tem 300 is depicted as processing a SAML token only as an
example. Trust chain processing system 300 may be a trust
chain processing system for processing any type of tokenized
information, whether or not related to security.

Outgoing request 304 may be a web service request
according to incoming request 302. However, outgoing
request 304 may be modified such that outgoing request 304
is a web service request with the incoming token and/or
modified security information, such as Java Authentication
and Authorization Service (JAAS) subject.

To authorize access to resources, applications first need to
authenticate the source of the request. The JAAS framework
defines the term “subject” to represent the source of a request.
A subject may be any entity, such as a person or a service.
Once the subject is authenticated, a Java security object called
“subject” is populated with identities associated with the
request. The identities are called principals and a subject may
have several principals. For example, a user associated with
the request may have a name principal, e.g., “John Doe”, and
a social security number principal, e.g. 123-45-6789.

A subject may also include security information in the
form of security related attributes called credentials or other
general use attributes. For example, the subject may include
other attributes that may not be security attributes. The sub-
ject may include such attributes for use by down-stream sys-
tems within a security domain so that those down-stream
systems do not have to regenerate, calculate, or find those
attributes.

The operation of trust chain processing system 300 is
described usinga SAML token as an example ofthe incoming
token in incoming request 302. Web service security handler
306 may be a software component of trust chain processing
system 300 that communicates with data processing systems,
applications, and users. Some of these data processing sys-

US 9,325,695 B2

9

tems, applications, and users may send requests with security
information and some may be target systems.

Web service security handler 306 may route incoming
request 302 to trust client 308. Trust client 308 may be a
component that facilitates communication between web ser-
vice security handler 306 and trust server 310. Trust server
310is also known as a trust service. Trust client 308 may pass
the security information associated with incoming request
302, such as a SAML token, to trust server 310.

Trust server 310 may include validating component 312
that may validate the security information. Trust server 310
may further include mapping component 314 that may map or
manipulate the security information into a modified format
suitable for a target system. Issuing component 316 may issue
or publish the modified security information as an outgoing
token so that other components may send the outgoing token
to the target system.

Trust server 310 may further include other components,
such as additional mapping components similar to mapping
component 314. Another example of components in trust
server 310 may be a logging component that may log the
mapped information to audit logs. A particular sequence of
validating component 312, particular mapping component
314, issuing component 316, and other components is called
a trust chain.

At trust chain processing system 300, information about
the message in which this security information was received
is used to determine a configuration to load. This configura-
tion identifies how to process the received security informa-
tion, including the steps required by the trust chain processing
system. Each of these steps may be implemented by an indi-
vidual security information module according to configura-
tion. This set of security information modules, when executed
in series, provides a chain of processing that implements the
overall processing for the received security information.

An outgoing token may include only the security informa-
tion that a target system may be able to use. For example, the
outgoing token may discard everything in the SAML token
accompanying incoming request 302 and include only an
identity associated with the original requester of incoming
request 302. A particular implementation may include more,
less, or different information in the outgoing token.

Trust server 310 returns the processed information to trust
client 308 in the form of an outgoing token. Trust client 308
passes the outgoing token back to web service security han-
dler 306. Web service security handler 306 may include sub-
ject setting component 318. Subject setting component 318
may use the outgoing token to set the subject object in out-
going request 304. Subject setting component 318 may set the
subject in collaboration with JAAS framework 320 provided
by a Java Virtual Machine. JAAS framework 320 may provide
the JAAS subject that may accompany outgoing request 304.
Web service security handler 306 may then send outgoing
request 304 to a target system for responding.

While performing each of their respective functions, vali-
dating component 312, mapping component 314, issuing
component 316, and any other component in the trust chain
may write some or all of the information contained in the
security token, such as a SAML token, to audit log 322. For
example, validating component 312 may write the received
SAML token to audit log 322. Mapping component may 314
may write the received SAML. token and mapped information
to audit log 322. Issuing component 316 may write the
mapped and issued information to audit log 322.

Audit log 322 may be a flat file, an index file, a relational
database, an object oriented database, or a data structure of

20

30

40

45

55

65

10

any other type suitable for storing data. Each component
emits a potentially different audit record to audit log 322.

Validation by validating component 312 and issue by issu-
ing component 316 are always performed in token process-
ing. Consequently, cost associated with this token processing
is a minimum of the cost of processing the information
through the trust service—trust server 310, and the trust
chain—validating component 312, issuing component 316,
and mapping component 314. Mapping component 314’s
cost is an additional processing cost.

Thus, if each incoming request 302 includes the same
token as a previous incoming request 302, the same token is
processed all over again. A data processing environment pro-
cessing the same token repeatedly incurs these costs repeat-
edly. Illustrative embodiments provide a way in which such
information can be processed and handled in a more efficient
manner in comparison.

With reference to FIG. 4, this figure depicts a block dia-
gram of a trust chain processing system associated with a
target application within which the illustrative embodiments
may be implemented. Trust chain processing system 400 may
be implemented as trust chain processing system 300 in FI1G.
3.

In one embodiment, incoming request 402 may be an origi-
nal request from a client application. In another embodiment,
incoming request 402 may be the outgoing request of a pre-
vious trust chain processing system, such as outgoing request
304 in FIG. 3.

JAAS login 406 may be part of a target system, such as a
software application, that may be capable of using incoming
request 402. In one embodiment, such as depicted in this
figure, JAAS login 406 may be another trust chain processing
system that may process a token associated with incoming
request 402 differently for an end-user target system. For
example, trust chain processing system 400 may process
similar to token processing, username and password informa-
tion associated with the JAAS subject that may be associated
with incoming request 402. Any number of trust chain pro-
cessing system 400 may intervene between trust chain pro-
cessing system 300 and an end-user target system in a given
data processing environment.

In this token processing, trust client 408 may operate in a
manner similar to trust client 308 in FIG. 3. Trust server 410
may operate in a manner similar to trust server 310 in FIG. 3.
Validating component 412 may operate in a manner similar to
validating component 312 in FIG. 3, but may perform a dif-
ferent validation owing to the different nature of the token
being processed.

Similarly, mapping component 414 may operate in a man-
ner similar to mapping component 314 in FIG. 3, but may
perform a different mapping. Issuing component 416 may
operate in a manner similar to issuing component 316 in FIG.
3 but may issue a different output. Other components in the
trust chain of trust server 410 may operate in a manner similar
to other components of trust server 310 in FIG. 3. Audit log
422 may operate in a manner similar to audit log 322 in FIG.
3, albeit may record different log entries owing to the nature
of'the token being different from the token processed in FIG.
3.

In the example depicted in this figure, incoming token
includes a username and password with a JAAS subject.
Through the token process of trust service of trust server 410,
trust server 410 may return a different outgoing token suitable
for an end-user target application. In the example depicted in
this figure, the end-user target system may be a CICS appli-
cation that may accept a username with a RACF ID and a
corresponding passticket.

US 9,325,695 B2

11

Thus, to provide such a token to the end-user target appli-
cation, trust server 410 may provide an outgoing token that
includes a username, RACF ID, and a passticket, to trust
client 408. The username, the RACF ID, and the passticket
included in the outgoing token may be derived from the
information contained in the incoming token that included a
username, password, and a JAAS subject.

Tlustrative embodiments recognize that in processing a
token in this manner, trust chain processing system 400 incurs
costs similar to the cost of processing as described with
respect to trust chain processing system 300 in FIG. 3. Trust
chain processing system 400 may also repeat this processing
each time the same incoming token is presented. Thus, trust
chain processing system 400 may incur repeated costs for
re-processing the same token, the same way.

With reference to FIG. 5, this figure depicts a block dia-
gram of a token caching trust chain processing system asso-
ciated with a target application in accordance with an illus-
trative embodiment. Trust chain processing system 500 may
be implemented as trust chain processing system 400 in FIG.
4.

In one embodiment, incoming request 502 may be an origi-
nal request from a client application. In another embodiment,
incoming request 502 may be the outgoing request of a pre-
vious trust chain processing system, such as outgoing request
304 in FIG. 3.

JAAS login 506 may be analogous to JAAS login 406 in
FIG. 4. Trust client 508 may operate in a manner similar to
trust client 408 in FIG. 4. Trust server 510 may operate in a
manner similar to trust server 410 in FIG. 4. Validating com-
ponent 512 may operate in a manner similar to validating
component 412 in FIG. 4. Mapping component 514 may
operate in a manner similar to mapping component 414 in
FIG. 4. Issuing component 516 may operate in a manner
similar to issuing component 416 in FIG. 4. Other compo-
nents in the trust chain of trust server 510 may operate in a
manner similar to other components of trust server 410 in
FIG. 4. Audit log 522 may operate in a manner similar to audit
log 422 in FIG. 4.

In the example depicted in this figure, incoming token
includes a username and password with a JAAS subject.
Through the token process of trust server 510, trust server 510
may provide an outgoing token that includes a username,
RACF ID, and a passticket, to trust client 508. The username,
the RACF ID, and the passticket included in the outgoing
token may be derived from the information contained in the
incoming token that included a username, password, and a
JAAS subject.

In accordance with an illustrative embodiment, cache 530
may store certain information pertaining to the incoming
token and the outgoing token. Cache 530 may store this
information so that the process through trust server 510 and
trust server 510’s trust chain may be avoided for repeat occur-
rences of the same incoming token. Cache 530 may be a
storage unit for storing data. Cache 530 as a storage unit may
be implemented using memory 208 in FIG. 2, a cache found
in North Bridge and memory controller hub 202, a persistent
data storage unit, such as a hard disk or flash memory, or any
suitable medium for data storage.

A requester, such as a client application sending incoming
request 502, may specify certain constraints on using the
token information provided in incoming request 502. For
example, the requester client may specify whether the client’s
security information in the token associated with incoming
request 502 may be stored at all. As another example, the
requester client may specify a period for which the client’s
authentication information in the incoming token may be

10

15

20

25

30

35

40

45

50

55

60

65

12

stored and reused. In some instances, the client may provide
a start time and an expiry time during which the incoming
token may be valid. In other instances, the client may provide
a length of time from initial receipt that the incoming token
may remain valid.

A requester may indicate other constraints with respect to
the use of the incoming token associated with incoming
request 502. For example, the requester client may specify
how many times the incoming token information may be
reused without re-processing or re-receiving from the client.
Other variations of a requestor’s constraints will be conceiv-
able from this disclosure and the same are contemplated
within the scope of the illustrative embodiments.

Cache 530 may store pieces of information, attributes, data
fragments, or artifacts of the incoming token and the outgoing
token. Cache 530 may store this information relative to
incoming request 502, together with any constraints provided
in the request that may govern the storage, re-use, and purging
of the cached token information. In the example depicted in
this figure, cache 530 is depicted as caching the JAAS subject,
times of creation and expiry of the JAAS subject if any, a
number of times the cached JAAS subject may be reused if
any. Cache 530 is depicted as additionally storing the RACF
1D and the passticket from the outgoing token corresponding
to the JAAS subject information in the incoming token.

With reference to FIG. 6, this figure depicts a block dia-
gram of a token caching trust chain processing system in
accordance with an illustrative embodiment. Trust chain pro-
cessing system 600 may be implemented as trust chain pro-
cessing system 500 in FIG. 5.

In one embodiment, incoming request 602 may be an origi-
nal request from a client application. In another embodiment,
incoming request 602 may be the outgoing request of a pre-
vious trust chain processing system, such as outgoing request
304 in FIG. 3.

JAAS login 606 may be analogous to JAAS login 506 in
FIG. 5. Trust client 608 may operate in a manner similar to
trust client 508 in FIG. 5. Trust server 610 may operate in a
manner similar to trust server 510 in FIG. 5. Validating com-
ponent 612 may operate in a manner similar to validating
component 512 in FIG. 5. Mapping component 614 may
operate in a manner similar to mapping component 514 in
FIG. 5. Issuing component 616 may operate in a manner
similar to issuing component 516 in FIG. 5. Other compo-
nents in the trust chain of trust server 610 may operate in a
manner similar to other components of trust server 510 in
FIG. 5. Auditlog 622 may operate in a manner similar to audit
log 522 in FIG. 5.

In the example depicted in this figure, incoming token
includes a username and password with a JAAS subject.
Through the token process of trust service of trust server 610,
trust server 610 may provide an outgoing token that includes
a username, RACF ID, and a passticket, to trust client 608.
The username, the RACF ID, and the passticket included in
the outgoing token may be derived from the information
contained in the incoming token that included a username,
password, and a JAAS subject.

In accordance with an illustrative embodiment, cache 630
may store information and requester provided constraints
pertaining to the incoming token and the outgoing token, as
described above. Cache 630 may store this information so
that the process through trust server 610 and trust server 610°s
trust chain may be avoided for repeat occurrences of the same
incoming token.

A target system, such as an end-user target application,
receiving outgoing request 604, may specify certain con-
straints on caching the token information provided in outgo-

US 9,325,695 B2

13

ing request 604. For example, the target system may specify
whether the mapped security information in the outgoing
token associated with outgoing request 604 may be stored at
all. As another example, the target system may specify a
period for which the authentication information in the outgo-
ing token may be stored and reused. In some instances, the
target system may provide a start time and an expiry time
during which the outgoing token may be valid.

In other instances, the target system may provide a length
of time from initial processing that the outgoing token may
remain valid. For example, consider a SAML token that may
contain a username and password that can be presented to
downstream systems, such as in an HT'TP Basic Auth header.
Assume that a cache according to the illustrative embodi-
ments has cached the username and password information for
a user Jane such that the cached information is valid for the
duration of her session. Assume that as a CICS policy, a
RACEF ID and passticket may not remain valid for longer than
ten minutes. Consequently, RACF ID and passticket associ-
ated with a second user John may remain for ten minutes.
Thus, the cache information for Jane will be valid for a long
time, but for John, a new Passticket will have to be generated
by the trust chain for requests that go beyond the previous
RACEF ID and passticket’s ten min life-time or validity period.

A target system may indicate other constraints with respect
to the use of the outgoing token associated with the outgoing
request. For example, the target system may specify a number
of times the outgoing token information may be reused with-
out re-processing the incoming token from the client.

Furthermore, one or more requesters, one or more target
systems, an intermediary system, an administrator, a policy
implementation, another source of constraints, or a combina-
tion thereof, may provide such constraints to cache 630. For
example, an administrator may enforce an administration
policy that stale authentication information older than two
minutes may not be re-used without reprocessing. Similarly,
a system-wide policy may dictate that incoming tokens from
a certain client should always be processed and never cached.
As another example, a CICS target system may require regen-
eration of RACF ID and passtickets at every tenth request
received within five minutes from the same client in the same
session.

Many other constraints and variations of constraints will be
conceivable from this disclosure and the same are contem-
plated within the scope of the illustrative embodiments. For
example, in one embodiment, trust server 610 may itself
impose constraints similar to the client constraints or target
system constraints. Accordingly, caching to token informa-
tion, and reuse of the cached information may be subject to
constraints imposed by a client, a target system, a trust server,
a trust chain processing system, another relevant data pro-
cessing system or application, a policy, or a combination
thereof, within the scope of the illustrative embodiments.

Cache 630 may store pieces of information, attributes, data
fragments, or artifacts of the incoming token and the outgoing
token. Cache 630 may store this information relative to
incoming request 602, outgoing request 604, or both. Further-
more, cache 630 may cache this information together with
any constraints provided in the client’s request, target system
instructions, trust server configuration, or a combination
thereof, that may govern the storage, re-use, and purging of
the cached token information.

Additionally, cache 630 may include a method for resolv-
ing conflicting constraints. For example, a client may allow
the client’s authentication information from the incoming
token to be stored for one day, but a CICS application may
restrict caching of RACF ID to five minutes. In such an

10

15

20

25

30

35

40

45

50

55

60

65

14

example scenario, cache 630 may use the lowest common
denominator approach to resolve the conflicting constraints
and re-process the client’s incoming token again after five
minutes. Any method of resolving conflicting instructions
may be used in conjunction with cache 630 without departing
from the scope of the illustrative embodiments.

Inthe example depicted in this figure, cache 630 is depicted
as caching information pertaining to the incoming token, such
as a SAML token or a derivative thereof, with corresponding
requester constraints. In this example, cache 630 caches the
JAAS subject, the SAML assertion, times of creation and
expiry, if any, of the JAAS subject or SAML Token, and
number of times the cached information may be reused, if
any.

In the example depiction, cache 630 is further depicted as
caching information pertaining to the outgoing token, with
corresponding target system constraints. Cache 630 is
depicted as storing the RACF ID and the passticket from the
outgoing token corresponding to the JAAS subject informa-
tion in the incoming token. Cache 630 is also depicted as
storing a creation time of the RACF ID and passticket, such as
for an implied constraint that if a stored RACF ID was created
less than a predetermined period ago, the RACF ID may be
reused.

An implementation of the illustrative embodiments may
implement cache 630 as a single cache for information
together with caching requester constraints and target system
constraints. Another implementation of the illustrative
embodiments may implement cache 630 as separate caches,
one for caching information with requester constraints, and
another for caching information with target system con-
straints. Such implementation variations are contemplated
within the scope of the illustrative embodiments.

With reference to FIG. 7, this figure depicts a flowchart of
aprocess for token caching in trust chain processing in accor-
dance with an illustrative embodiment. Process 700 may be
implemented in trust chain processing system 500, such as for
caching using cache 530 in FIG. 5.

Process 700 begins by receiving authentication informa-
tion (step 702). Process 700 receives the authentication infor-
mation of step 702 as a token associated with a request.

Process 700 may validate the authentication information
(step 704). Process 700 determines if any client imposed
constraints are associated with the information received in
step 702, and identifies such client imposed constraints, if
present (step 706).

Process 700 maps the authentication information, such as
by using a mapping component in a trust chain in the manner
described above (step 708). Process 700 saves the received
authentication information, the mapped authentication infor-
mation, client constraints, or a combination thereof (step
710). Process 700 uses the mapped authentication informa-
tion, such by sending the mapped information to a target
system (step 712). Process 700 ends thereafter.

With reference to FIG. 8, this figure depicts a flowchart of
a process of using cached token information in accordance
with an illustrative embodiment. Process 800 may be imple-
mented in trust chain processing system 500 in FIG. 5. For
example, JAAS login 506 in FIG. 5 may use process 800 to
reuse cached RACF 1D and passticket with a CICS applica-
tion for arequest in a session with a particular requester client.

Process 800 begins by receiving authentication informa-
tion (step 802). Authentication information received in step
802 may be a repeat of the authentication information
received from a particular requester in relation with a particu-
lar session with a particular target system.

US 9,325,695 B2

15

Process 800 determines if the authentication information
received in step 802, and the result of processing that authen-
tication information through a trust server is available in a
cache (step 804). If process 800 determines that the authen-
tication information and the result of processing that authen-
tication information are not available in the cache (“No” path
of'step 804), process 800 may transfer control to process 700
starting at step 702 in process 700. Process 800 ends when
process 700, after receiving control from process 800, ends.

If process 800 determines that the authentication informa-
tion and the result of processing that authentication informa-
tion are available in the cache (“Yes” path of step 804),
process 800 determines if client constraints associated with
such information in cache are satisfied (step 806). If process
800 determines that client constraints associated with such
information in cache are not satisfied (“No” path of step 806),
process 800 transters control to process 700 starting at step
702 in process 700. Process 800 ends when process 700, after
receiving control from process 800, ends.

Ifprocess 800 determines that client constraints associated
with such information in cache are satisfied (““Yes” path of
step 806), process 800 reuses the saved mapped authentica-
tion information (step 808). Process 800 ends thereafter. Pro-
cess 800 may reuse the mapped authentication information,
for example, by sending the mapped authentication informa-
tion to the target system.

With reference to FIG. 9, this figure depicts a flowchart of
aprocess for token caching in trust chain processing in accor-
dance with an illustrative embodiment. Process 900 may be
implemented in trust chain processing system 600, such as for
caching using cache 630 in FIG. 6.

Process 900 begins by receiving authentication informa-
tion (step 902). Process 900 receives the authentication infor-
mation of step 902 as a token associated with a request.

Process 900 may validate the authentication information
(step 904). Process 900 determines if any client imposed
constraints are associated with the information received in
step 902, and identifies such client imposed constraints, if
present (step 906).

Process 900 maps the authentication information, such as
by using a mapping component in a trust chain in the manner
described above (step 908). In some instances, the authenti-
cation information received in step 902 may already be
mapped from an original incoming token. In such instances,
process 900 may remap the already mapped authentication
information in step 908.

Process 900 determines if any target system imposed con-
straints, in other words, server imposed constraints, are asso-
ciated with the authentication information or mapped/re-
mapped authentication information. Process 900 makes this
determination and identifies such server imposed constraints,
if present (step 910).

Process 900 saves the received authentication information,
the mapped authentication information, remapped authenti-
cation information, client constraints, server constraints, or a
combination thereof (step 912). Process 900 uses the mapped/
re-mapped authentication information, such by sending the
mapped/re-mapped information to a target system (step 914).
Process 900 ends thereafter.

With reference to FIG. 10, this figure depicts a flowchart of
a process of using cached token information in accordance
with an illustrative embodiment. Process 1000 may be imple-
mented in trust chain processing system 600 in FIG. 6. For
example, JAAS login 606 in FIG. 6 may use process 1000 to
reuse cached RACF ID and passticket with a CICS applica-
tion for arequest in a session with a particular requester client.

20

40

45

50

60

16

Process 1000 begins by receiving authentication informa-
tion (step 1002). Authentication information received in step
1002 may be a repeat of the authentication information
received from a particular requester in relation with a particu-
lar session with a particular target system.

Process 1000 determines if the authentication information
received in step 1002, and the result of processing that authen-
tication information through a trust server is available in a
cache (step 1004). If process 1000 determines that the authen-
tication information and the result of processing that authen-
tication information are not available in the cache (“No” path
of step 1004), process 1000 may transfer control to process
900 starting at step 902 in process 900. Process 1000 ends
when process 900, after receiving control from process 1000,
ends.

If process 1000 determines that the authentication infor-
mation and the result of processing that authentication infor-
mation are available in the cache (“Yes” path of step 1004),
process 1000 determines if client constraints associated with
such information in cache are satisfied (step 1006). If process
1000 determines that client constraints associated with such
information in cache are not satisfied (“No” path of step
1006), process 1000 transfers control to process 900 starting
at step 902 in process 900. Process 1000 ends when process
900, after receiving control from process 1000, ends.

If process 1000 determines that client constraints associ-
ated with such information in cache are satisfied (“Yes” path
of step 1006), process 1000 determines if any server con-
straints associated with such information and the result of
mapping such information in cache are satisfied (step 1008).
If process 1000 determines that server constraints associated
with such information in cache are not satisfied (“No” path of
step 1008), process 1000 transfers control to process 900
starting at step 912 in process 900. Process 1000 ends when
process 900, after receiving control from process 1000, ends.

If process 1000 determines that server constraints associ-
ated with such information in cache are satisfied (“Yes” path
of'step 1008), process 1000 reuses the saved mapped authen-
tication information (step 1010). Process 1000 ends thereaf-
ter. Process 1000 may reuse the mapped authentication infor-
mation, for example, by sending the mapped/re-mapped
authentication information to the target system, to wit, the
server.

Authentication information is used only as an example for
clarity in describing processes 700, 800, 900, and 1000. An
implementation may replace the authentication information
with any other token related information. Any such token or
token related information may be processed using any of
processes 700, 800, 900, or 1000 without departing from the
scope of the illustrative embodiments.

The components in the block diagrams and the steps in the
flowcharts described above are described only as exemplary.
The components and the steps have been selected for the
clarity of the description and are not limiting on the illustra-
tive embodiments. For example, a particular implementation
may combine, omit, further subdivide, modify, augment,
reduce, or implement alternatively, any of the components or
steps without departing from the scope of the illustrative
embodiments. Furthermore, the steps of the processes
described above may be performed in a different order within
the scope of the illustrative embodiments.

Thus, a computer implemented method, apparatus, and
computer program product are provided in the illustrative
embodiments for token caching in trust chain processing. Any
information communicated in the form of a token may be
processed and cached according to the illustrative embodi-
ments. Security information and authentication information,

US 9,325,695 B2

17

and tokens corresponding thereto are used in this disclosure
only as examples. Such description and illustrations using
security or authentication information are not limiting on the
illustrative embodiments.

Security information, such as a SAML token, associated
with anincoming request is processed through a trust chain by
a trust service. Certain components of the security informa-
tion are cached, and modified security information is issued to
a target system.

Processing security information, such as SAML token, is
resource intensive in a data processing environment. Security
information may be reissued or reused from cache to any data
processing system, application, or user in a data processing
environment in the manner of the illustrative embodiments.

Illustrative embodiments reissue or reuse the cached infor-
mation, cached mapped information, or cached remapped
information in compliance with any constraints on their re-
issue or reuse. Client systems may impose constraints on
reuse of the client’s information during a session with a server
system. Server system may also impose constraints onreissue
or reuse of mapped information in a session. The trust server
itself, or the trust chain processing system as a whole may also
impose constraints on reissue or reuse of mapped information
in a session. [llustrative embodiments resolve any conflicts
that may exist among the applicable constrains using any
conflict resolution method available for resolving conflicts
among rules.

Tlustrative embodiments contemplate several ways of
managing the lifetime of the cached information in compli-
ance with one or more constraints that may operate upon the
cached information. For example, illustrative embodiments
may be adapted to completely remove expired information
from the cache. As another example, illustrative embodi-
ments may also be adapted to flag any cached information that
fails to qualify for reuse under a constraint.

In some cases, periodically or upon a condition, the illus-
trative embodiments may review the cached information for
identifying expired information or information that may
expire within a threshold period. The illustrative embodi-
ments may mark, flag, or otherwise manipulate such identi-
fied information for managing the cache to a desirable size.
Of course, illustrative embodiments may be adapted in other
ways for managing cached information that may be suitable
in particular implementations without departing from the
scope of the illustrative embodiments.

Thus, illustrative embodiments avoid or reduce the cost of
repeated processing of security information by reusing
already processed information when possible. Caching and
reusing token processing information involves non-trivial
token processing steps that have to work in conjunction with
caching process. For example, illustrative embodiments
determine when to bypass token processing, which token
processing steps to bypass, and which steps to re-perform, for
using the cached information. Making such determinations,
and altering token processing accordingly is distinct from
using cached web content where no token processing occurs
or is modified in the manner of the illustrative embodiments.

The invention can take the form of an entirely hardware
embodiment, an entirely software embodiment, or an
embodiment containing both hardware and software ele-
ments. In a preferred embodiment, the invention is imple-
mented in software, which includes but is not limited to
firmware, resident software, and microcode.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution

25

30

35

40

45

18

system. For the purposes of this description, a computer-
usable or computer-readable medium can be any tangible
apparatus that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
ordevice) or a propagation medium. Examples of'a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
a rigid magnetic disk, and an optical disk. Current examples
of optical disks include compact disk-read only memory
(CD-ROM), compact disk-read/write (CD-R/W) and DVD.

Further, a computer storage medium may contain or store a
computer-readable program code such that when the com-
puter-readable program code is executed on a computer, the
execution of this computer-readable program code causes the
computer to transmit another computer-readable program
code over a communications link. This communications link
may use a medium that is, for example without limitation,
physical or wireless.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories, which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

A data processing system may act as a server data process-
ing system or a client data processing system. Server and
client data processing systems may include data storage
media that are computer usable, such as being computer
readable. A data storage medium associated with a server data
processing system may contain computer usable code. A
client data processing system may download that computer
usable code, such as for storing on a data storage medium
associated with the client data processing system, or for using
in the client data processing system. The server data process-
ing system may similarly upload computer usable code from
the client data processing system. The computer usable code
resulting from a computer usable program product embodi-
ment of the illustrative embodiments may be uploaded or
downloaded using server and client data processing systems
in this manner.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

The description ofthe present invention has been presented
for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to explain the principles of
the invention, the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are suited
to the particular use contemplated.

US 9,325,695 B2

19

What is claimed is:
1. A computer implemented method for token caching in a
trust chain processing, the computer implemented method
comprising:
mapping an information, which is present in a token
received in a first request, forming mapped information,
wherein the token comprises a system-specific data con-
struct other than a username and password pair;

determining whether a requestor of the first request has
provided a constraint in the first request, the constraint
concerning the token, the constraint forming a client
constraint;

storing the client constraint;

storing the information and the mapped information, form-

ing stored information;
receiving the token in a second request;
determining whether a target system receiving the mapped
information has provided a second constraint, the sec-
ond constraint concerning the mapped information, the
second constraint forming a server constraint; and

reusing the stored information when the client constraint
and the server constraint both allow reusing the stored
information.

2. The computer implemented method of claim 1, wherein
the client constraint includes one of (i) a time of expiry of the
token, (ii) a duration of validity of the token, (iii) a number of
reuse permitted of the token, and (iv) an indication whether a
target system can receive the client constraint.

3. The computer implemented method of claim 1, wherein
the server constraint includes one of (i) a time of expiry of the
mapped information, (ii) a duration of validity of the mapped
information, (iii) a number of reuse permitted of the mapped
information.

4. The computer implemented method of claim 1, further
comprising:

resolving a conflict between the client constraint and the

server constraint with respect to the token and the
mapped information resulting from the token.

5. The computer implemented method of claim 1, wherein
the requestor controls the reuse of the information in the token
by a trust service.

6. The computer implemented method of claim 1, wherein
the token is an incoming SAML token, the information is
authentication information, the mapping is a part of a trust
chain processing, and the mapped information is an issued
outgoing token.

7. A computer usable program product comprising a com-
puter usable storage device including computer usable code
for token caching in a trust chain processing, the computer
usable code comprising:

computer usable code for mapping an information, which

is present in a token received in a first request, forming
mapped information;

computer usable code for determining whether a requestor

of the first request has provided a constraint in the first
request, the constraint concerning the token, the con-
straint forming a client constraint;

computer usable code for storing the client constraint;

computer usable code for storing the information and the

mapped information, forming stored information;
computer usable code for receiving the token in a second
request;

computer usable code for determining whether a target

system receiving the mapped information has provided a
second constraint, the second constraint concerning the
mapped information, the second constraint forming a
server constraint; and

15

20

25

30

35

40

45

50

55

60

20

computer usable code for reusing the stored information
when the client constraint and the server constraint both
allow reusing the stored information.

8. The computer usable program product of claim 7,
wherein the client constraint includes one of (i) a time of
expiry of the token, (ii) a duration of validity of the token, (iii)
a number of reuse permitted of the token, and (iv) an indica-
tion whether a target system can receive the client constraint.

9. The computer usable program product of claim 7,
wherein the server constraint includes one of (i) a time of
expiry ofthe mapped information, (ii) a duration of validity of
the mapped information, (iii) a number of reuse permitted of
the mapped information.

10. The computer usable program product of claim 7,
wherein the requestor controls the reuse of the information in
the token by a trust service.

11. The computer usable program product of claim 7,
wherein the token is an incoming SAML token, the informa-
tion is authentication information, the mapping is a part of a
trust chain processing, and the mapped information is an
issued outgoing token.

12. The computer program product of claim 7, wherein the
computer usable code is stored in a computer readable storage
medium in a data processing system, and wherein the com-
puter usable code is transferred over a network from a remote
data processing system.

13. The computer program product of claim 7, wherein the
computer usable code is stored in a computer readable storage
medium in a server data processing system, and wherein the
computer usable code is downloaded over a network to a
remote data processing system for use in a computer readable
storage medium associated with the remote data processing
system.

14. A data processing system for token caching in a trust
chain processing, the data processing system comprising:

a storage device including a storage medium, wherein the
storage device stores computer usable program code;
and

a processor, wherein the processor executes the computer
usable program code, and wherein the computer usable
program code comprises:

computer usable code for mapping an information, which
is present in a token received in a first request, forming
mapped information;

computer usable code for determining whether a requestor
of the first request has provided a constraint in the first
request, the constraint concerning the token, the con-
straint forming a client constraint;

computer usable code for storing the client constraint;

computer usable code for storing the information and the
mapped information, forming stored information;

computer usable code for receiving the token in a second
request;

computer usable code for determining whether a target
system receiving the mapped information has provided a
second constraint, the second constraint concerning the
mapped information, the second constraint forming a
server constraint; and

computer usable code for reusing the stored information
when the client constraint and the server constraint both
allow reusing the stored information.

15. The data processing system of claim 14, wherein the
client constraint includes one of (i) a time of expiry of the
token, (ii) a duration of validity of the token, (iii) a number of
reuse permitted of the token, and (iv) an indication whether a
target system can receive the client constraint.

US 9,325,695 B2

21

16. The data processing system of claim 14, further com-
prising:

computer usable code for resolving a conflict between the

client constraint and the server constraint with respect to
the token and the mapped information resulting from the
token.

17. The data processing system of claim 16, wherein the
server constraint includes one of (i) a time of expiry of the
mapped information, (ii) a duration of validity of the mapped
information, (iii) a number of reuse permitted of the mapped
information.

18. The data processing system of claim 14, wherein the
requestor controls the reuse of the information in the token by
a trust service.

19. The data processing system of claim 14, wherein the
token is an incoming SAML token, the information is authen-
tication information, the mapping is a part of a trust chain
processing, and the mapped information is an issued outgoing
token.

10

15

20

22

